
Algebraically reversible solvers for
neural differential equations

James Foster

University of Bath

Ongoing with Samuel McCallum (Bath)

Outline

1 Neural Ordinary Differential Equations

2 Algebraically reversible ODE solvers

3 Towards more general reversible solvers

4 Conclusion and future work

5 References

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 0 / 30

What is a neural differential equation?

These are differential equations where the vector field is parametrised
as a neural network.

Standard example: Neural ODEs [1], due to Chen et al. (NeurIPS 2018).

dy
dt

= fθ(t, y(t)),

y(0) = y0,

where fθ can be any neural network (feedforward, convolutional, etc).

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 1 / 30

Examples of neural ordinary differential equations
A simple example: The SIR model for modelling infectious diseases

d
dt

s(t)i(t)
r(t)

 =

 −bs(t)i(t)
bs(t)i(t)− ki(t)

ki(t)

 ,

where b and k are parameters that are learnt from data.

What is a neural differential equation anyway?
(And why you might already be using them.)

Classical example of a ‘neural’ differential equation: the SIR model.

d
dt

s(t)
i(t)
r(t)

 =

 −b s(t) i(t)
b s(t) i(t)− k i(t)

k i(t)


b and k are parameters learnt from data.

An ODE solve produces a computation graph, that we can backpropagate
through: train b and k via SGD.

Neural Differential Equations Patrick Kidger 5

At the other extreme, Neural ODEs have achieved 70% accuracy for
ImageNet classification [2] (outperforming a well-tuned ResNet).
James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 2 / 30

How to train your Neural ODE (backpropagation)

Step 1. Define a differentiable scalar loss function based on the data

L
(
y(t)

)
= L
(
ODESolve

(
y(0), t, fθ

))
.

Step 2. As “ODESolve” is a composition of differentiatiable operations,
we can compute dL

dθ using automatic differentiation / backpropagation.
Step 3. Apply stochastic gradient descent (SGD) with dL

dθ to minimize L.

However...

When applying backpropagation, we store the full ODE trajectory {ytk}.

Thus, the memory cost scales linearly with the number of steps / depth.

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 3 / 30

How to train your Neural ODE (adjoint method)

Step 1. Define a differentiable scalar loss function based on the data

L
(
y(t)

)
= L
(
ODESolve

(
y(0), t, fθ

))
.

Step 2. Compute L
(
y(T)

)
via ODE solver. Then a(t) := ∂L(y(t))

∂y(t) satisfies

da(t)
dt

= −a(t)T
∂fθ
(
t, y(t)

)
∂y

.

Step 3. Solve the above adjoint equation via ODE solver, and evaluate

dL
dθ

=

∫ T

0
a(t)T

∂fθ
(
t, y(t)

)
∂θ

dt.

Step 4. Apply stochastic gradient descent (SGD) with dL
dθ to minimize L.

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 4 / 30

Reconstruction and extrapolation of spirals with
irregular time points (taken from [1])

invariant, given any latent state z(t), the entire latent trajectory is uniquely defined. Extrapolating
this latent trajectory lets us make predictions arbitrarily far forwards or backwards in time.

Training and Prediction We can train this latent-variable model as a variational autoen-
coder (Kingma and Welling, 2014; Rezende et al., 2014), with sequence-valued observations. Our
recognition net is an RNN, which consumes the data sequentially backwards in time, and out-
puts qφ(z0|x1,x2, . . . ,xN). A detailed algorithm can be found in Appendix E. Using ODEs as a
generative model allows us to make predictions for arbitrary time points t1...tM on a continuous
timeline.

λ
(t
)

t

Figure 7: Fitting a latent ODE dy-
namics model with a Poisson pro-
cess likelihood. Dots show event
times. The line is the learned inten-
sity λ(t) of the Poisson process.

Poisson Process likelihoods The fact that an observation oc-
curred often tells us something about the latent state. For ex-
ample, a patient may be more likely to take a medical test if
they are sick. The rate of events can be parameterized by a
function of the latent state: p(event at time t| z(t)) = λ(z(t)).
Given this rate function, the likelihood of a set of indepen-
dent observation times in the interval [tstart, tend] is given by an
inhomogeneous Poisson process (Palm, 1943):

log p(t1 . . . tN | tstart, tend) =
N∑
i=1

log λ(z(ti))−
∫ tend

tstart

λ(z(t))dt

We can parameterize λ(·) using another neural network. Con-
veniently, we can evaluate both the latent trajectory and the
Poisson process likelihood together in a single call to an ODE solver. Figure 7 shows the event rate
learned by such a model on a toy dataset.

(a) Recurrent Neural Network

(b) Latent Neural Ordinary Differential Equation
Ground Truth
Observation
Prediction
Extrapolation

(c) Latent Trajectories

Figure 8: (a): Reconstruction and extrapolation
of spirals with irregular time points by a recurrent
neural network. (b): Reconstructions and extrapo-
lations by a latent neural ODE. Blue curve shows
model prediction. Red shows extrapolation. (c) A
projection of inferred 4-dimensional latent ODE
trajectories onto their first two dimensions. Color
indicates the direction of the corresponding trajec-
tory. The model has learned latent dynamics which
distinguishes the two directions.

A Poisson process likelihood on observation
times can be combined with a data likelihood to
jointly model all observations and the times at
which they were made.

5.1 Time-series Latent ODE Experiments

We investigate the ability of the latent ODE
model to fit and extrapolate time series. The
recognition network is an RNN with 25 hidden
units. We use a 4-dimensional latent space. We
parameterize the dynamics function f with a
one-hidden-layer network with 20 hidden units.
The decoder computing p(xti |zti) is another
neural network with one hidden layer with 20
hidden units. Our baseline was a recurrent neu-
ral net with 25 hidden units trained to minimize
negative Gaussian log-likelihood. We trained a
second version of this RNN whose inputs were
concatenated with the time difference to the next
observation to aid RNN with irregular observa-
tions.

Bi-directional spiral dataset We generated
a dataset of 1000 2-dimensional spirals, each
starting at a different point, sampled at 100
equally-spaced timesteps. The dataset contains
two types of spirals: half are clockwise while
the other half counter-clockwise. To make the
task more realistic, we add gaussian noise to the
observations.

7

Figure: Recurrent Neural Network

invariant, given any latent state z(t), the entire latent trajectory is uniquely defined. Extrapolating
this latent trajectory lets us make predictions arbitrarily far forwards or backwards in time.

Training and Prediction We can train this latent-variable model as a variational autoen-
coder (Kingma and Welling, 2014; Rezende et al., 2014), with sequence-valued observations. Our
recognition net is an RNN, which consumes the data sequentially backwards in time, and out-
puts qφ(z0|x1,x2, . . . ,xN). A detailed algorithm can be found in Appendix E. Using ODEs as a
generative model allows us to make predictions for arbitrary time points t1...tM on a continuous
timeline.

λ
(t
)

t

Figure 7: Fitting a latent ODE dy-
namics model with a Poisson pro-
cess likelihood. Dots show event
times. The line is the learned inten-
sity λ(t) of the Poisson process.

Poisson Process likelihoods The fact that an observation oc-
curred often tells us something about the latent state. For ex-
ample, a patient may be more likely to take a medical test if
they are sick. The rate of events can be parameterized by a
function of the latent state: p(event at time t| z(t)) = λ(z(t)).
Given this rate function, the likelihood of a set of indepen-
dent observation times in the interval [tstart, tend] is given by an
inhomogeneous Poisson process (Palm, 1943):

log p(t1 . . . tN | tstart, tend) =
N∑
i=1

log λ(z(ti))−
∫ tend

tstart

λ(z(t))dt

We can parameterize λ(·) using another neural network. Con-
veniently, we can evaluate both the latent trajectory and the
Poisson process likelihood together in a single call to an ODE solver. Figure 7 shows the event rate
learned by such a model on a toy dataset.

(a) Recurrent Neural Network

(b) Latent Neural Ordinary Differential Equation
Ground Truth
Observation
Prediction
Extrapolation

(c) Latent Trajectories

Figure 8: (a): Reconstruction and extrapolation
of spirals with irregular time points by a recurrent
neural network. (b): Reconstructions and extrapo-
lations by a latent neural ODE. Blue curve shows
model prediction. Red shows extrapolation. (c) A
projection of inferred 4-dimensional latent ODE
trajectories onto their first two dimensions. Color
indicates the direction of the corresponding trajec-
tory. The model has learned latent dynamics which
distinguishes the two directions.

A Poisson process likelihood on observation
times can be combined with a data likelihood to
jointly model all observations and the times at
which they were made.

5.1 Time-series Latent ODE Experiments

We investigate the ability of the latent ODE
model to fit and extrapolate time series. The
recognition network is an RNN with 25 hidden
units. We use a 4-dimensional latent space. We
parameterize the dynamics function f with a
one-hidden-layer network with 20 hidden units.
The decoder computing p(xti |zti) is another
neural network with one hidden layer with 20
hidden units. Our baseline was a recurrent neu-
ral net with 25 hidden units trained to minimize
negative Gaussian log-likelihood. We trained a
second version of this RNN whose inputs were
concatenated with the time difference to the next
observation to aid RNN with irregular observa-
tions.

Bi-directional spiral dataset We generated
a dataset of 1000 2-dimensional spirals, each
starting at a different point, sampled at 100
equally-spaced timesteps. The dataset contains
two types of spirals: half are clockwise while
the other half counter-clockwise. To make the
task more realistic, we add gaussian noise to the
observations.

7

Figure: Neural ODE

invariant, given any latent state z(t), the entire latent trajectory is uniquely defined. Extrapolating
this latent trajectory lets us make predictions arbitrarily far forwards or backwards in time.

Training and Prediction We can train this latent-variable model as a variational autoen-
coder (Kingma and Welling, 2014; Rezende et al., 2014), with sequence-valued observations. Our
recognition net is an RNN, which consumes the data sequentially backwards in time, and out-
puts qφ(z0|x1,x2, . . . ,xN). A detailed algorithm can be found in Appendix E. Using ODEs as a
generative model allows us to make predictions for arbitrary time points t1...tM on a continuous
timeline.

λ
(t
)

t

Figure 7: Fitting a latent ODE dy-
namics model with a Poisson pro-
cess likelihood. Dots show event
times. The line is the learned inten-
sity λ(t) of the Poisson process.

Poisson Process likelihoods The fact that an observation oc-
curred often tells us something about the latent state. For ex-
ample, a patient may be more likely to take a medical test if
they are sick. The rate of events can be parameterized by a
function of the latent state: p(event at time t| z(t)) = λ(z(t)).
Given this rate function, the likelihood of a set of indepen-
dent observation times in the interval [tstart, tend] is given by an
inhomogeneous Poisson process (Palm, 1943):

log p(t1 . . . tN | tstart, tend) =
N∑
i=1

log λ(z(ti))−
∫ tend

tstart

λ(z(t))dt

We can parameterize λ(·) using another neural network. Con-
veniently, we can evaluate both the latent trajectory and the
Poisson process likelihood together in a single call to an ODE solver. Figure 7 shows the event rate
learned by such a model on a toy dataset.

(a) Recurrent Neural Network

(b) Latent Neural Ordinary Differential Equation
Ground Truth
Observation
Prediction
Extrapolation

(c) Latent Trajectories

Figure 8: (a): Reconstruction and extrapolation
of spirals with irregular time points by a recurrent
neural network. (b): Reconstructions and extrapo-
lations by a latent neural ODE. Blue curve shows
model prediction. Red shows extrapolation. (c) A
projection of inferred 4-dimensional latent ODE
trajectories onto their first two dimensions. Color
indicates the direction of the corresponding trajec-
tory. The model has learned latent dynamics which
distinguishes the two directions.

A Poisson process likelihood on observation
times can be combined with a data likelihood to
jointly model all observations and the times at
which they were made.

5.1 Time-series Latent ODE Experiments

We investigate the ability of the latent ODE
model to fit and extrapolate time series. The
recognition network is an RNN with 25 hidden
units. We use a 4-dimensional latent space. We
parameterize the dynamics function f with a
one-hidden-layer network with 20 hidden units.
The decoder computing p(xti |zti) is another
neural network with one hidden layer with 20
hidden units. Our baseline was a recurrent neu-
ral net with 25 hidden units trained to minimize
negative Gaussian log-likelihood. We trained a
second version of this RNN whose inputs were
concatenated with the time difference to the next
observation to aid RNN with irregular observa-
tions.

Bi-directional spiral dataset We generated
a dataset of 1000 2-dimensional spirals, each
starting at a different point, sampled at 100
equally-spaced timesteps. The dataset contains
two types of spirals: half are clockwise while
the other half counter-clockwise. To make the
task more realistic, we add gaussian noise to the
observations.

7

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 5 / 30

Why Neural ODEs and the adjoint method?

• Continuous time, so well suited for handling (irregular) time series

• Flexible, includes “mechanistic” and “deep” models (+ hybrids [3])

• Choice of ODE solver allows trade-offs between accuracy and cost

• Adjoint method is memory efficient! (i.e. doesn’t scale with depth)

However...

Solving the ODE and adjoint equation can give inexact gradients.

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 6 / 30

Outline

1 Neural Ordinary Differential Equations

2 Algebraically reversible ODE solvers

3 Towards more general reversible solvers

4 Conclusion and future work

5 References

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 6 / 30

Accurate memory-efficient gradients for Neural ODEs

To get accurate gradients (e.g. by backpropagation or adjoint method),
we would need to reconstruct the ODE solution in the backwards pass.

In [2], it was shown this can be achieved using a reversible ODE solver.

Published as a conference paper at ICLR 2021

Table 1: Comparison between different methods for gradient estimation in continuous case. MALI achieves
reverse accuracy, constant memory w.r.t number of solver steps in integration, shallow computation graph and
low computation cost.

Naive Adjoint ACA MALI
Computation NzNf ×Nt ×m× 2 NzNf × (Nt +Nr)×m NzNf ×Nt × (m+ 1) NzNf ×Nt × (m+ 2)

Memory NzNf ×Nt ×m NzNf Nz(Nf +Nt) Nz(Nf + 1)
Computation graph depth Nf ×Nt ×m Nf ×Nr Nf ×Nt Nf ×Nt

Reverse accuracy 3 7 3 3

Figure 1: Illustration of numerical solver in
forward-pass. For adaptive solvers, for each step
forward-in-time, the stepsize is recursively ad-
justed until the estimated error is below prede-
fined tolerance; the search process is represented
by green curve, and the accepted step (ignore the
search process) is represented by blue curve.

Figure 2: In backward-pass, the adjoint method
reconstructs trajectory as a separate IVP. Naive,
ACA and MALI track the forward-time trajectory,
hence are accurate. ACA and MALI only back-
propagate through the accepted step, while naive
method backpropagates through the search pro-
cess hence has deeper computation graphs.

of the gradient in the continuous case is

dL

dθ
= −

∫ 0

T

a(t)>
∂f(z(t), t, θ)

∂θ
dt (2)

da(t)

dt
+
(∂f(z(t), t, θ)

∂z(t)

)>
a(t) = 0 ∀t ∈ (0, T), a(T) =

∂L

∂z(T)
(3)

where a(t) is the “adjoint state”. Detailed proof is given in (Pontryagin, 1962). In the next section
we compare different numerical implementations of this analytical form.

2.3 NUMERICAL IMPLEMENTATIONS IN THE LITERATURE FOR THE ANALYTICAL FORM

We compare different numerical implementations of the analytical form in this section. The forward-
pass and backward-pass of different methods are demonstrated in Fig. 1 and Fig. 2 respectively.
Forward-pass is similar for different methods. The comparison of backward-pass among different
methods are summarized in Table. 1. We explain methods in the literature below.

Naive method The naive method saves all of the computation graph (including search for optimal
stepsize, green curve in Fig. 2) in memory, and backpropagates through it. Hence the memory cost is
NzNf ×Nt×m and depth of computation graph are Nf ×Nt×m, and the computation is doubled
considering both forward and backward passes. Besides the large memory and computation, the
deep computation graph might cause vanishing or exploding gradient (Pascanu et al., 2013).

Adjoint method Note that we use “adjoint state equation” to refer to the analytical form in Eq. 2
and 3, while we use “adjoint method” to refer to the numerical implementation by Chen et al. (2018).
As in Fig. 1 and 2, the adjoint method forgets forward-time trajectory (blue curve) to achieve
memory cost NzNf which is constant to integration time; it takes the end-time state (derived from
forward-time integration) as the initial state, and solves a separate IVP (red curve) in reverse-time.

Theorem 2.1. (Zhuang et al., 2020) For an ODE solver of order p, the error of
the reconstructed initial value by the adjoint method is

∑N−1
k=0

[
hp+1
k DΦTtk(zk)l(tk, zk) +

3

Published as a conference paper at ICLR 2021

Table 1: Comparison between different methods for gradient estimation in continuous case. MALI achieves
reverse accuracy, constant memory w.r.t number of solver steps in integration, shallow computation graph and
low computation cost.

Naive Adjoint ACA MALI
Computation NzNf ×Nt ×m× 2 NzNf × (Nt +Nr)×m NzNf ×Nt × (m+ 1) NzNf ×Nt × (m+ 2)

Memory NzNf ×Nt ×m NzNf Nz(Nf +Nt) Nz(Nf + 1)
Computation graph depth Nf ×Nt ×m Nf ×Nr Nf ×Nt Nf ×Nt

Reverse accuracy 3 7 3 3

Figure 1: Illustration of numerical solver in
forward-pass. For adaptive solvers, for each step
forward-in-time, the stepsize is recursively ad-
justed until the estimated error is below prede-
fined tolerance; the search process is represented
by green curve, and the accepted step (ignore the
search process) is represented by blue curve.

Figure 2: In backward-pass, the adjoint method
reconstructs trajectory as a separate IVP. Naive,
ACA and MALI track the forward-time trajectory,
hence are accurate. ACA and MALI only back-
propagate through the accepted step, while naive
method backpropagates through the search pro-
cess hence has deeper computation graphs.

of the gradient in the continuous case is

dL

dθ
= −

∫ 0

T

a(t)>
∂f(z(t), t, θ)

∂θ
dt (2)

da(t)

dt
+
(∂f(z(t), t, θ)

∂z(t)

)>
a(t) = 0 ∀t ∈ (0, T), a(T) =

∂L

∂z(T)
(3)

where a(t) is the “adjoint state”. Detailed proof is given in (Pontryagin, 1962). In the next section
we compare different numerical implementations of this analytical form.

2.3 NUMERICAL IMPLEMENTATIONS IN THE LITERATURE FOR THE ANALYTICAL FORM

We compare different numerical implementations of the analytical form in this section. The forward-
pass and backward-pass of different methods are demonstrated in Fig. 1 and Fig. 2 respectively.
Forward-pass is similar for different methods. The comparison of backward-pass among different
methods are summarized in Table. 1. We explain methods in the literature below.

Naive method The naive method saves all of the computation graph (including search for optimal
stepsize, green curve in Fig. 2) in memory, and backpropagates through it. Hence the memory cost is
NzNf ×Nt×m and depth of computation graph are Nf ×Nt×m, and the computation is doubled
considering both forward and backward passes. Besides the large memory and computation, the
deep computation graph might cause vanishing or exploding gradient (Pascanu et al., 2013).

Adjoint method Note that we use “adjoint state equation” to refer to the analytical form in Eq. 2
and 3, while we use “adjoint method” to refer to the numerical implementation by Chen et al. (2018).
As in Fig. 1 and 2, the adjoint method forgets forward-time trajectory (blue curve) to achieve
memory cost NzNf which is constant to integration time; it takes the end-time state (derived from
forward-time integration) as the initial state, and solves a separate IVP (red curve) in reverse-time.

Theorem 2.1. (Zhuang et al., 2020) For an ODE solver of order p, the error of
the reconstructed initial value by the adjoint method is

∑N−1
k=0

[
hp+1
k DΦTtk(zk)l(tk, zk) +

3

Figure: Illustration of a reversible ODE solver called “ALF” (taken from [2])

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 7 / 30

Accurate memory-efficient gradients for Neural ODEs

Definition (ODE solver with order of convergence α)
We say an ODE solver Φ : R× Rd 7→ R converges with order α > 0 if

‖x(h)− Φh(x)‖ ≤ C|h|α+1,

where x(h) is the solution at time |h| of an ODE started at x(0) := x,

x ′ = f(x) if h ≥ 0, or x ′ = −f(x) if h < 0.

Definition (Symmetric reversibility)
We say an ODE solver Φ is symmetric reversible if Φ−h(Φh(x)) = x.

Example
For a general f : Rd → Rd, Euler’s method is not symmetric reversible.

(x+ fθ(x)h)− fθ(x+ fθ(x)h)h 6= x

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 8 / 30

Examples of reversible solvers

Example (Asynchronous Leapfrog Integrator (ICLR 2021))

Xn+ 1
2
:= Xn +

1

2
Vnh,

Vn+1 := 2f
(
Xn+ 1

2

)
− Vn ,

Xn+1 := Xn + f
(
Xn+ 1

2

)
h,

where X0 := x(0) and V0 := f(X0).

Remark (Algebraic reversibility)

Xn+ 1
2
= Xn+1 −

1

2
Vn+1h,

Vn = 2f
(
Xn+ 1

2

)
− Vn+1 ,

Xn = Xn+1 − f
(
Xn+ 1

2

)
h.

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 9 / 30

Examples of reversible solvers

Example (Reversible Heun’s method (NeurIPS 2021))

Yn+1 := 2Xn − Yn + f(Yn)h,

Xn+1 := Xn +
1

2

(
f(Yn) + f(Yn+1)

)
h,

where X0 = Y0 = x(0).

Remark (Algebraic reversibility)

Yn = 2Xn+1 − Yn+1 − f(Yn+1)h,

Xn = Xn+1 −
1

2

(
f(Yn+1) + f(Yn)

)
h.

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 10 / 30

Examples of reversible solvers

Both methods...

• achieve reversibility by introducing extra state.

• have second order convergence with fixed steps.

• have a potentially unstable step of the form 2A− B.

• have worked in large-scale applications:
– A Neural ODE with the asynchronous leapfrog integrator achieved
better performance than a ResNet-18 (≈ 11.7million parameters)
for classification on the ImageNet dataset [2].

– A Neural SDE with the reversible Heun scheme was successfully
used to model turbulence (≈ 4.6million parameters) [4].

• can be defined for both ODEs and SDEs. However, in the SDE case,
we could only prove convergence for the Reversible Heun scheme.

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 11 / 30

Examples of reversible solvers
Modelling turbulence is computationally demanding due to the fine
mesh and steps used to approximate the PDE. A transformer-based
Neural SDE model was recently developed for such simulations [4],
and was numerically discretized using the Reversible Heun method.

Figure 3: Root mean squared error (RMSE) over the first 1000 steps (first two columns) and the
turbulent kinetic energy (TKE) spectrum E(k) averaged over the first 2500 steps (right two columns)
of two independent test trajectories unseen during training or validation. niLES has an improved
ability to capture the long term statistics accurately compared to both implicit LES and deterministic
NN. The energy buildup in the small scales (large wavenumber) in the deterministic NN model
eventually leads to unstable trajectories.

(a) (b) (c) (d)

Figure 4: Comparison between rollout predictions after 800 LES steps on a held-out trajectory.
Velocities in the x (top row) and y (bottom row) directions respectively. Snapshots of filtered DNS
(reference) (a), niLES (b), implicit LES (c) and deterministic NN models (d). The niLES captures
several finer scale features of the flow consistent with the reference filtered DNS trajectory. The
implicit LES has an overall smoothing effect and some turbulent structures are not captured. The
deterministic NN LES shows artifacts which indicate instability.

general. We loosely divide the related works into four categories, placing particular emphasis on the
treatment of effects caused by unresolved (typically small-scaled) variables.

Classical turbulence methods primarily relies on phenomenological arguments to derive an eddy
viscosity term [46], which is added to the physical viscosity and accounts for the dissipation of energy
from large to small scales. The term may be static [4], time-dependent [74, 29] or multi-scale [37, 38].

Data-driven surrogates often do not model the closure in an explicit way. However, by learning
the dynamics directly from data at finite resolution, the effects of unresolved variables and scales
are expected to be captured implicitly and embedded in the machine learning models. A variety
of architectures have been explored, including ones based on multi-scaled convolutional neural
networks [68, 80, 75], transformers [11], graph neural networks [71, 47] and operator learning [63].

Hybrid physics-ML contains a rich set of recent methods to combine classical numerical schemes and
deep learning models [59, 6, 45, 54, 22, 79, 56, 33]. The former is expected to provide a reasonable
baseline, while the latter specializes in capturing the interactions between modeled and unmodeled
variables that accurately represent high-resolution data. This yields cost-effective, low-resolution
methods that achieve comparable accuracy to more expensive simulations.

9

Figure 3: Root mean squared error (RMSE) over the first 1000 steps (first two columns) and the
turbulent kinetic energy (TKE) spectrum E(k) averaged over the first 2500 steps (right two columns)
of two independent test trajectories unseen during training or validation. niLES has an improved
ability to capture the long term statistics accurately compared to both implicit LES and deterministic
NN. The energy buildup in the small scales (large wavenumber) in the deterministic NN model
eventually leads to unstable trajectories.

(a) (b) (c) (d)

Figure 4: Comparison between rollout predictions after 800 LES steps on a held-out trajectory.
Velocities in the x (top row) and y (bottom row) directions respectively. Snapshots of filtered DNS
(reference) (a), niLES (b), implicit LES (c) and deterministic NN models (d). The niLES captures
several finer scale features of the flow consistent with the reference filtered DNS trajectory. The
implicit LES has an overall smoothing effect and some turbulent structures are not captured. The
deterministic NN LES shows artifacts which indicate instability.

general. We loosely divide the related works into four categories, placing particular emphasis on the
treatment of effects caused by unresolved (typically small-scaled) variables.

Classical turbulence methods primarily relies on phenomenological arguments to derive an eddy
viscosity term [46], which is added to the physical viscosity and accounts for the dissipation of energy
from large to small scales. The term may be static [4], time-dependent [74, 29] or multi-scale [37, 38].

Data-driven surrogates often do not model the closure in an explicit way. However, by learning
the dynamics directly from data at finite resolution, the effects of unresolved variables and scales
are expected to be captured implicitly and embedded in the machine learning models. A variety
of architectures have been explored, including ones based on multi-scaled convolutional neural
networks [68, 80, 75], transformers [11], graph neural networks [71, 47] and operator learning [63].

Hybrid physics-ML contains a rich set of recent methods to combine classical numerical schemes and
deep learning models [59, 6, 45, 54, 22, 79, 56, 33]. The former is expected to provide a reasonable
baseline, while the latter specializes in capturing the interactions between modeled and unmodeled
variables that accurately represent high-resolution data. This yields cost-effective, low-resolution
methods that achieve comparable accuracy to more expensive simulations.

9

Figure 3: Root mean squared error (RMSE) over the first 1000 steps (first two columns) and the
turbulent kinetic energy (TKE) spectrum E(k) averaged over the first 2500 steps (right two columns)
of two independent test trajectories unseen during training or validation. niLES has an improved
ability to capture the long term statistics accurately compared to both implicit LES and deterministic
NN. The energy buildup in the small scales (large wavenumber) in the deterministic NN model
eventually leads to unstable trajectories.

(a) (b) (c) (d)

Figure 4: Comparison between rollout predictions after 800 LES steps on a held-out trajectory.
Velocities in the x (top row) and y (bottom row) directions respectively. Snapshots of filtered DNS
(reference) (a), niLES (b), implicit LES (c) and deterministic NN models (d). The niLES captures
several finer scale features of the flow consistent with the reference filtered DNS trajectory. The
implicit LES has an overall smoothing effect and some turbulent structures are not captured. The
deterministic NN LES shows artifacts which indicate instability.

general. We loosely divide the related works into four categories, placing particular emphasis on the
treatment of effects caused by unresolved (typically small-scaled) variables.

Classical turbulence methods primarily relies on phenomenological arguments to derive an eddy
viscosity term [46], which is added to the physical viscosity and accounts for the dissipation of energy
from large to small scales. The term may be static [4], time-dependent [74, 29] or multi-scale [37, 38].

Data-driven surrogates often do not model the closure in an explicit way. However, by learning
the dynamics directly from data at finite resolution, the effects of unresolved variables and scales
are expected to be captured implicitly and embedded in the machine learning models. A variety
of architectures have been explored, including ones based on multi-scaled convolutional neural
networks [68, 80, 75], transformers [11], graph neural networks [71, 47] and operator learning [63].

Hybrid physics-ML contains a rich set of recent methods to combine classical numerical schemes and
deep learning models [59, 6, 45, 54, 22, 79, 56, 33]. The former is expected to provide a reasonable
baseline, while the latter specializes in capturing the interactions between modeled and unmodeled
variables that accurately represent high-resolution data. This yields cost-effective, low-resolution
methods that achieve comparable accuracy to more expensive simulations.

9

Figure: PDE simulation (left), Neural SDE (middle) and Neural network (right)
James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 12 / 30

Examples of reversible solvers

However [5] and [6] report that the reversible Heun method was too
unstable for their applications.

Asynchronous Leapfrog Integrator Reversible Heun method

Xn+ 1
2
:= Xn + 1

2Vnh,

Vn+1 := 2f
(
Xn+ 1

2

)
− Vn ,

Xn+1 := Xn + f
(
Xn+ 1

2

)
h,

Yn+1 := 2Xn − Yn + f(Yn)h,
Xn+1 := Xn + 1

2

(
f(Yn) + f(Yn+1)

)
h

We believe that any instability is then amplified by these solvers when
• Vn and f(Xn) drift apart (for ALF)
• Xn and Yn drift apart (for RH)

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 13 / 30

Outline

1 Neural Ordinary Differential Equations

2 Algebraically reversible ODE solvers

3 Towards more general reversible solvers

4 Conclusion and future work

5 References

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 13 / 30

Towards more general algebraically reversible solvers

Given an ODE solver Φh, we define the map Ψh(x) := Φh(x)− x so that

‖x(h)− (x+Ψh(x))‖ ≤ C|h|α+1, (1)

where x(h) is the solution at time h of the ODE started at x(0) := x.

Definition (A “forward-backward” reversible solver for ODEs)
We construct a numerical solution {(Yn, Zn)}n≥0 by Y0 = Z0 = x(0) and

Yn+1 := λYn + (1− λ)Zn +Ψh(Zn),

Zn+1 := Zn −Ψ−h(Yn+1),

where h > 0 is the step size and λ ∈ (0, 1] is a “coupling” parameter.

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 14 / 30

Towards more general algebraically reversible solvers

The new solver is
Yn+1 := λYn + (1− λ)Zn +Ψh(Zn),

Zn+1 := Zn −Ψ−h(Yn+1),

The first property to note is that this is algebraically reversible since

Zn := Zn+1 +Ψ−h(Yn+1),

Yn := λ−1Yn+1 + (1− λ−1)Zn − λ−1Ψh(Zn).

Secondly, we introduce λ ∈ (0, 1] so that Yn and Zn stay close together,

Yn+1 − Zn+1 = λ(Yn − Zn) + Ψh(Zn) + Ψ−h(Yn+1)︸ ︷︷ ︸
small if Zn ≈ x(tn) and Yn+1 ≈ x(tn+1)

.

But if λ is too small, it might cause instabilities on the backwards pass.

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 15 / 30

Overview of error analysis

Currently, our analysis requires the map Ψh to be Lipschitz continuous.

More specifically, we assume there exists ‖Ψ‖ > 0 and hmax > 0 so that∥∥Ψh(x)−Ψh(y)
∥∥ ≤ ‖Ψ‖|h|‖x− y‖, (2)

for x ∈ Rd and h ∈ [−hmax ,hmax].

From (2) along with our assumption thatΨ is an order α solver, we have∥∥Ψh(x+Ψ−h(x)) + Ψ−h(x)
∥∥ ≤ C̃|h|α+1. (3)

In other words, going forwards and backwards with Ψ gives little error.

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 16 / 30

Overview of error analysis
Suppose we discretise the ODE over the time horizon [0, T] with N steps
(that is, we use a constant step size of h := T

N). Then ‖Y−Z‖ is small as

‖Yn+1 − Zn+1‖
= ‖λ(Yn − Zn) + Ψh(Zn) + Ψ−h(Yn+1)‖

≤ |λ|‖Yn − Zn‖+ ‖Ψh(Zn) + Ψ−h(Zn+1)‖+ ‖Ψ−h(Yn+1)−Ψ−h(Zn+1)‖

≤ |λ|‖Yn − Zn‖+ ‖Ψh(Zn+1 +Ψ−h(Yn+1)) + Ψ−h(Zn+1)‖
+ ‖Ψ‖|h|‖Yn+1 − Zn+1‖

≤ |λ|‖Yn − Zn‖+ ‖Ψh(Zn+1 +Ψ−h(Zn+1)) + Ψ−h(Zn+1)‖︸ ︷︷ ︸
≤ C̃ |h|α+1

+ ‖Ψh(Zn+1 +Ψ−h(Yn+1))−Ψh(Zn+1 +Ψ−h(Zn+1))‖︸ ︷︷ ︸
≤∥Ψ∥2h2∥Yn+1− Zn+1∥

+ ‖Ψ‖|h|‖Yn+1 − Zn+1‖.

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 17 / 30

Overview of error analysis

After showing that Y and Z are close together, we consider the quantity

Xn := λN−nYn + (1− λN−n)Zn .

This leads to the following error estimate,

‖Xn+1 − x(tn+1)‖
=
∥∥λN−(n+1)Yn+1 + (1− λN−(n+1))Zn+1 − x(tn+1)

∥∥
=
∥∥Xn + λN−(n+1)Ψh(Zn)− (1− λN−(n+1))Ψ−h(Yn+1)− x(tn+1)

∥∥
≤ ‖Xn − x(tn)‖+ λN−(n+1)

∥∥Ψh(Zn) + Ψ−h(Yn+1)
∥∥︸ ︷︷ ︸

=:A

+
∥∥x(tn)− (x(tn+1) + Ψ−h(Yn+1)

)∥∥︸ ︷︷ ︸
=:B

,

where A and B can be estimated using similar techniques as before.
James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 18 / 30

Overview of error analysis

Theorem (Main result; any ODE solver can made reversible)
Suppose Ψ corresponds to an α-order numerical method for the ODE

x ′ = f(x),

where t ∈ [0, T] for a fixed T. Then under the Lipschitz assumption (2),
there exists constants C,hmax > 0 such that∥∥Yk − x(tk)

∥∥ ≤ Chα,

for all k ∈ {0, 1, · · · ,N} where h ∈ (0, hmax] , tk := kh ∈ [0, T] and

Yn+1 := λYn + (1− λ)Zn +Ψh(Zn),

Zn+1 := Zn −Ψ−h(Yn+1),

with λ ∈ (0, 1] and Y0 = Z0 = x(0).

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 19 / 30

Stability of reversible ODE solvers

Although we can construct arbitrarily high order ODE reversible solvers,
we have not yet addressed the main challenges which concern stability.

Definition (A-stability region)
Consider the following linear ODE,

y ′ = αy, (4)
y(0) = 1,

where α ∈ C with Re(α) < 0. A numerical solution Y = {Yk}k≥0 of (4)
is said to be A-stable at α if Yk → 0 as k → ∞. The stability region is

R = {α ∈ C : Re(α) < 0 and Y = {Yk} is A-stable at α}.

The Asynchronous Leapfrog Integrator and Reversible Heun method
are not A-stable (for any α ∈ C).

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 20 / 30

Stability of reversible ODE solvers

Suppose Ψh(x) = αxh. Then each step of the reversible ODE solver is

Yn+1 := λYn + (1− λ)Zn + αZnh,

Zn+1 := Zn + αYn+1h,

which can be expressed as(
Yn+1

Zn+1

)
= A

(
Yn
Zn

)
,

where

A :=

(
λ 1− λ+ αh

αλh 1 + α(1− λ)h+ α2h2

)
.

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 21 / 30

Stability of reversible ODE solvers

Since trA and detA are the sum and product of the eigenvalues {η±},
we compute

detA = λ(1 + α(1− λ)h+ α2h2)− (1− λ+ αh)αλh = λ,

trA = 1 + λ+ α(1− λ)h+ α2h2 .

which gives the eigenvalues,

η± =
1

2

(
1 + λ+ α(1− λ)h+ α2h2

)
± 1

2

√
(1− λ)2 + (1 + λ)

(
α(1− λ)h+ α2h2

)
+
(
α(1− λ)h+ α2h2

)2
,

however we do not yet have an explicit formula for the stability region
(i.e. the values of α ∈ C such that |η+| ∨ |η−| < 1).

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 22 / 30

Stability of reversible ODE solvers

Thus, we have stability regions – unlike previous reversible schemes!

Figure: Stability regions for different reversible schemes (h = 1 and λ = 0.8).

We conjecture that decreasing λ ∈ (0, 1] improves the stability region.

However, if λ is too small, then the backwards solve may be unstable.

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 23 / 30

A potentially more stable reversible solver

Based on the Ψh(x) = f(x)h case, we can instead consider the scheme:

Yn+ 1
2
:= λYn + (1− λ)Zn +

1

2
f(Zn)h,

Zn+1 := Zn + f(Yn+ 1
2
)h,

Yn+1 := Yn+ 1
2
+

1

2
f(Zn+1)h. (5)

which uses two extra function evaluations per step and is reversible as

Yn+ 1
2
= Yn+1 −

1

2
f(Zn+1)h,

Zn = Zn+1 − f(Yn+ 1
2
)h,

Yn = λ−1Yn+ 1
2
+ (1− λ−1)Zn −

1

2
λ−1 f(Zn)h.

However, the associated eigenvalues will become more complicated...
James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 24 / 30

Outline

1 Neural Ordinary Differential Equations

2 Algebraically reversible ODE solvers

3 Towards more general reversible solvers

4 Conclusion and future work

5 References

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 24 / 30

Conclusion

• Among the recent advances in neural differential equations,
reversible solvers have seen utility due to the accurate and
memory-efficient gradients that they provide during training.

• However, the current reversible NDE solvers have stability issues.
We believe that this instability is amplified by the “2A− B” terms.

• We propose a “forward-backward” approach in which any ODE
solver can be converted to a reversible one with the same order
(but at the cost of using twice the function evaluations per step).

• This leads to a second order reversible ODE solver (5), which we
expect has a non-empty stability region (unlike previous solvers).

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 25 / 30

Future work

• Error analysis, stability analysis and numerical examples for (5).

• In practice, what are good values for the coupling parameter λ?

• Runge-Kutta methods for ODEs are defined by Butcher Tableaus.
For the coefficients in these tableaus, there are order conditions.

Can we derive such tools to facilitate the use of reversible solvers?

• Similarly, could we derive a Butcher group [7] of reversible solvers?

• Extension to Neural CDEs [8] or RDEs [9] via log-ODEmethod [10]?

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 26 / 30

Thank you
for your attention!

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 27 / 30

Outline

1 Neural Ordinary Differential Equations

2 Algebraically reversible ODE solvers

3 Towards more general reversible solvers

4 Conclusion and future work

5 References

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 27 / 30

References I

R. T. Q. Chen, Y. Rubanova, J. Bettencourt and D. Duvenaud.
Neural Ordinary Differential Equations, Neural Information
Processing Systems, 2018.

J. Zhuang, N. C. Dvornek, S. Tatikonda and J. S. Duncan. MALI:
A memory efficient and reverse accurate integrator for Neural ODEs,
International Conference on Learning Representations, 2021.

C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R.
Supekar, D. Skinner, A. Ramadhan and A. Edelman.
Universal Differential Equations for Scientific Machine Learning,
arXiv:2001.04385, 2020.

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 28 / 30

https://arxiv.org/abs/2001.04385

References II

A. Boral, Z. Yi Wan, L. Zepeda-Núñez, J. Lottes, Q. Wang, Y. Chen,
J. R. Anderson and F. Sha. Neural Ideal Large Eddy Simulation:
Modeling Turbulence with Neural Stochastic Differential Equations,
Neural Information Processing Systems, 2023.

Q. Zhang and Y. Chen. Path Integral Sampler: A Stochastic Control
Approach For Sampling, International Conference on Learning
Representations, 2022.

A. Howe. Possible issue with ReversibleHeun solver instability,
https://github.com/patrick-kidger/diffrax/issues/417, 2024.

J. C. Butcher. Numerical Methods for Ordinary Differential
Equations, Third Edition, John Wiley & Sons, 2016.

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 29 / 30

https://github.com/patrick-kidger/diffrax/issues/417

References III

P. Kidger, J. Morrill, J. Foster and T. Lyons. Neural Controlled
Differential Equations for Irregular Time Series, Neural Information
Processing Systems, 2020.

J. Morrill, C. Salvi, P. Kidger, J. Foster and T. Lyons. Neural Rough
Differential Equations for Long Time Series, International
Conference on Machine Learning, 2021.

B. Walker, A. D. McLeod, T. Qin, Y. Cheng, H. Li and T. Lyons. Log
Neural Controlled Differential Equations: The Lie Brackets Make a
Difference, International Conference on Machine Learning, 2024.

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024 30 / 30

	Neural Ordinary Differential Equations
	Algebraically reversible ODE solvers
	Towards more general reversible solvers
	Conclusion and future work
	References

