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What is a neural differential equation?

These are differential equations where the vector field is parametrised
as a neural network.

Standard example: Neural ODEs [1], due to Chen et al. (NeurIPS 2018).

Y ),
y(0) = yo,

where fy can be any neural network (feedforward, convolutional, etc).
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Examples of neural ordinary differential equations

A simple example: The SIR model for modelling infectious diseases

4 (S0 —bs(t)i(1)
— ([(t)) = (bs(z‘)z‘(t) ki(f)) ;
r(t) ki(1)

where b and k are parameters that are learnt from data.

Outputs

_____________________

At the other extreme, Neural ODEs have achieved 70% accuracy for
ImageNet classification [2] (outperforming a well-tuned ResNet).
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How to train your Neural ODE (backpropagation)

Step 1. Define a differentiable scalar loss function based on the data

L(y(t)) =L (ODESolve(y(O), t,f9)> :

Step 2. As “ODESolve” is a composition of differentiatiable operations,
we can compute using automatic differentiation / backpropagation.
Step 3. Apply stochashc gradient descent (SGD) with dL to minimize L.

However...

When applying backpropagation, we store the full ODE trajectory {yz, }.

Thus, the memory cost scales linearly with the number of steps / depth.
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How to train your Neural ODE (adjoint method)
Step 1. Define a differentiable scalar loss function based on the data
L(y(t)) =L <ODESo/ve(y(0), t fg)).

Step 2. Compute L(y(T)) via ODE solver. Then a(t) := ag(yy(())) satisfies

da(t) A (t,y(1))
a =’ oy

Step 3. Solve the above adjoint equation via ODE solver, and evaluate

)
Zé:/() a(t)T(%(ggy(t)) dt

Step 4. Apply stochastic gradient descent (SGD) with dL to minimize L.
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Reconstruction and extrapolation of spirals with
irregular time points (taken from [1])

== Ground Truth
® Observation

== Prediction

= Extrapolation

Figure: Neural ODE
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Why Neural ODEs and the adjoint method?

Continuous time, so well suited for handling (irregular) time series

Flexible, includes “mechanistic” and “deep” models (+ hybrids [3])

Choice of ODE solver allows trade-offs between accuracy and cost

Adjoint method is memory efficient! (i.e. doesn’t scale with depth)

However...

Solving the ODE and adjoint equation can give inexact gradients.
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Accurate memory-efficient gradients for Neural ODEs

To get accurate gradients (e.g. by backpropagation or adjoint method),
we would need to reconstruct the ODE solution in the backwards pass.

In [2], it was shown this can be achieved using a reversible ODE solver.

N B Z(13)
z Z(Tgl =
B _ ez A >
Search for
optimal stepsize Adjoint
—_ E—
Step forward with MALI/ACA
optimal stepsize
...... R
Ground-truth Naive
trajectory
T
o b i FE To 71 T2 T3

Figure: Illustration of a reversible ODE solver called “ALF” (taken from [2])

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024



Accurate memory-efficient gradients for Neural ODEs

Definition (ODE solver with order of convergence «)

We say an ODE solver @ : R x R? — R converges with order o > 0 if

Ix(h) = @p()]| < ClA|**,
where x(h) is the solution at time |h| of an ODE started at x(0) := x,

x"=f(x) if h>0, or x'=-f(x) if h<o.

Definition (Symmetric reversibility)
We say an ODE solver @ is symmetric reversible if ®_p(P®py(x)) = x.

Example

For a general f: R? — R, Euler’s method is not symmetric reversible.

(X4 fa(x)h) — fo(x + fo(X)h)h # x
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Examples of reversible solvers

Example (Asynchronous Leapfrog Integrator (ICLR 2021))

1
Xn+% = Xn + §Vnha
Vn+1 = 2f(Xn_’_%) - Vn,

Xn41 o= Xn + [(Xp 1)h,

where Xy := x(0) and Vp := f(Xo).

Remark (Algebraic reversibility)

1
Xn-&-% = Xnt1 — §Vn+1h7
Vo = 2f(Xn+%) = Vht1,
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Examples of reversible solvers

Example (Reversible Heun’s method (NeurIPS 2021))

Yoy :=2Xn — Yo +f(Yn)h,
Xast = X 3 (f(Va) +1Vns 1))

where X = Yy = x(0).

Remark (Algebraic reversibility)

Yn = 2Xn—i-l - Yn+1 —f(YrH—l)h,
1
Xn = Xny1 — Q(f(yn-i-l) + f(Ya))h.
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Examples of reversible solvers

Both methods...

e achieve reversibility by introducing extra state.

have second order convergence with fixed steps.

have a potentially unstable step of the form 2A — B.

have worked in large-scale applications:

— A Neural ODE with the asynchronous leapfrog integrator achieved
better performance than a ResNet-18 (& 11.7 million parameters)
for classification on the ImageNet dataset [2].

— A Neural SDE with the reversible Heun scheme was successfully
used to model turbulence (~ 4.6 million parameters) [4].

can be defined for both ODEs and SDEs. However, in the SDE case,
we could only prove convergence for the Reversible Heun scheme.
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Examples of reversible solvers

Modelling turbulence is computationally demanding due to the fine
mesh and steps used to approximate the PDE. A transformer-based
Neural SDE model was recently developed for such simulations [4],
and was numerically discretized using the Reversible Heun method

?4.‘.

L

E

u.- 1'-

0 A 4

Figure: PDE simulation (left), Neural SDE (middle) and Neural network (right)
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Examples of reversible solvers

However [5] and [6] report that the reversible Heun method was too

unstable for their applications.

Asynchronous Leapfrog Integrator

Reversible Heun method

Xny1 = Xn+ 3Vah,
Vn+1 = Zf(Xn“Fé) - Vn,
Xnt1 1= Xn +f(Xn+%)h,

Yni1 :=2Xp — Yy —l—f(Yn)h,
Xng1 :=Xn + 5 (f(Ya) + f(Yng1))h

We believe that any instability is then amplified by these solvers when

e V, and f(X,) drift apart (for ALF)
e X, and Y, drift apart (for RH)
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Towards more general algebraically reversible solvers

Given an ODE solver &y, we define the map ¥y (x) := ®5(x) — x so that
Ix(h) = (x + Wp(x))|| < ClAI**, 1)

where x(h) is the solution at time h of the ODE started at x(0) := x.

Definition (A “forward-backward” reversible solver for ODEs)
We construct a numerical solution {(Yn,Zn)}a>0 by Yo = Zp = x(0) and

Yn+1 = )\Yn + (1 — )\)Zn + qjh(Zn),
Znt1:=2n — \I’—h(Yn—i—l)a

where h > 0 is the step size and X € (0, 1] is a “coupling” parameter.
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Towards more general algebraically reversible solvers

The new solveris
Yn+1 = )\Yn + (1 - )\)Zn + \Ilh(Zn),
Zn+1 =2n — \I/—h(yﬂ+1)7

The first property to note is that this is algebraically reversible since
Zni=2Zpi1+ \I’fh(YnJrl)a
Yo = AW + (1= AHZ = X w,(2)).

Secondly, we introduce A € (0, 1] so that Y, and Z, stay close together,

Vi1 = Zng1r = MY — Zn) + Yp(Zn) + ¥_p(Yns1) -

small if Zn~x(th) and Y41 = X(th41)

But if X is too small, it might cause instabilities on the backwards pass.
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Overview of error analysis

Currently, our analysis requires the map ¥, to be Lipschitz continuous.

More specifically, we assume there exists ||| > 0 and hmax > 0 so that

[ TR(x) = Ta(y)]| < 1E1AlIX = v, )

forx € R?and h € [—hmax, hmax]-

From (2) along with our assumption that ¥ is an order « solver, we have
[Wh(x + T_p(x) + T_p(x)]| < ClA*H. (3)

In other words, going forwards and backwards with ¥ gives little error.
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Overview of error analysis

Suppose we discretise the ODE over the time horizon [0, T] with N steps
(that is, we use a constant step size of h := ). Then ||Y — Z|| is small as
[Ynt1 — Znsall

= [[A(Yn — Zn) + Yn(Zn) + Y_p(Ynr1)|l
UMY = Zall + 1 %1 (Zn) + Y _p (Znr )| + 1P (Yng1) = ¥_p(Zng) |

S AN = Zall + [9h(Zns1 + Y _p(Yng1)) + ¥ _p(Zng)]|
+ 1 ¥][|Al[|Yns1 — Zntal]

< |AIYR = Zall + 1A (Zns1 + ¥ _p(Znt1)) + V_p(Zny)]|

~~

SE'h‘a«kl
W (Znt1 + Vo p(Yng1)) = Un(Zngr + U_p(Zny1))]|

-~
<IN 2R2 Y= Zota|
+ A1 = Znga]l-
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Overview of error analysis
After showing that Y and Z are close together, we consider the quantity
=AY+ (1= AV Z,
This leads to the following error estimate,
[Xnt1 = X(tnt)

_ ”/\N—(nJrl)Yn+1 + (1 - )\Nf(n+1))zn+1 . XUH—H)H
= ||Xn + AW (Z,) — (1= NN (Vog) — X(tg) |
< |Xn = x(t) || + AN W (Zy) + W (Vi) |

= A
- {[x(tn) = (X(tns1) + ¥ p(Yar) ||

=:B

where A and B can be estimated using similar techniques as before.
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Overview of error analysis

Theorem (Main result; any ODE solver can made reversible)
Suppose ¥ corresponds to an a-order numerical method for the ODE

where t € [0, T] for a fixed T. Then under the Lipschitz assumption (2),
there exists constants C, hmax > 0 such that

HYk —X(fk)” < Cha,
forallk € {0,1,--- ,N} where h € (0, hmax], tx := kh € [0, T] and

Yn+1 = AYn + (]. — )\)Zn + \Ilh(Zn)7
Zn+1 =2p — \I’—h(YfH—l)a
with X € (0,1] and Yy = Zp = x(0).
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Stability of reversible ODE solvers
Although we can construct arbitrarily high order ODE reversible solvers,
we have not yet addressed the main challenges which concern stability.

Definition (A-stability region)
Consider the following linear ODE,

y'=ay, (4)
y(0) =1,

where a € C with Re(a) < 0. A numerical solution Y = {Y}x> of (4)
is said to be A-stable at « if Y, — 0 as k — oco. The stability region is

R={ae€C : Re(a) <0 and Y = {Yy} is A-stable at a}.

The Asynchronous Leapfrog Integrator and Reversible Heun method
are not A-stable (forany a € C).
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Stability of reversible ODE solvers

Suppose ¥p(x) = axh. Then each step of the reversible ODE solver is

Yn+1 = )\Yn + (1 - )\)Zn + aZnh,
Zn+]_ = Zn ‘I— OéYnJr]_h,

which can be expressed as
Yni1 _ 4 Yn ’
Znt1 Zn

A 1—X+ah
A= .
alh 1+ a(l — A)h+ a2h?

where
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Stability of reversible ODE solvers

Since trA and detA are the sum and product of the eigenvalues {n.},
we compute

detA = A1+ a1l = A)h+a?h?) — (1 — XA+ ah)arh = )\,
trA =1+ XA+ a(l — A\)h +a?h?.

which gives the eigenvalues,

ne = 5 (14 A+ all = Nh+ o)

£ /(A2 4 (L ) (el = Nh +a2h) + (a(l - DA+ a2h2)’,

however we do not yet have an explicit formula for the stability region
(i.e. the values of a € C such that |ny| V |n-| < 1).
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Stability of reversible ODE solvers

Thus, we have stability regions — unlike previous reversible schemes!

Euler Midpoint RK3 RK4

— Original

| U

-8 =2 —1 0 -3 -2 -1 0 -3 -2 -1 0—8 3 i 0

_vam Re(a) Re(a) .—]h'(u)

Im(a)

Figure: Stability regions for different reversible schemes (h = 1 and A = 0.8).

We conjecture that decreasing A € (0, 1] improves the stability region.

However, if A is too small, then the backwards solve may be unstable.
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A potentially more stable reversible solver
Based on the ¥y, (x) = f(x)h case, we can instead consider the scheme:
1
Y(l-i-% = )\Yn + (]. - )\)Zn + Qf(Zn)h,
Zn+1 =2Zn +f(yn+%)ha
1
Y1 = Yn+% + 5]((Zn+1)h- (5)

which uses two extra function evaluations per step and is reversible as

1
YIH—% = Yn+1 - if(zn—l—l)ha
Zn = Zner = f(Vop1)h,

_ _ I
Yo=A 1Yn+%+(1—)\ 1)2,1*? Li(z)h.

However, the associated eigenvalues will become more complicated...
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Conclusion

e Among the recent advances in neural differential equations,
reversible solvers have seen utility due to the accurate and
memory-efficient gradients that they provide during training.

e However, the current reversible NDE solvers have stability issues.
We believe that this instability is amplified by the “2A — B” terms.

e \We propose a “forward-backward” approach in which any ODE
solver can be converted to a reversible one with the same order
(but at the cost of using twice the function evaluations per step).

e This leads to a second order reversible ODE solver (5), which we
expect has a non-empty stability region (unlike previous solvers).

James Foster (University of Bath) Reversible solvers for NDEs 8 June 2024



Future work

Error analysis, stability analysis and numerical examples for (5).

e In practice, what are good values for the coupling parameter \?

Runge-Kutta methods for ODEs are defined by Butcher Tableaus.
For the coefficients in these tableaus, there are order conditions.

Can we derive such tools to facilitate the use of reversible solvers?

Similarly, could we derive a Butcher group [7] of reversible solvers?

e Extension to Neural CDEs [8] or RDEs [9] via log-ODE method [10]?
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Thank you
for your attention!
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